Exploding Offers and Buy-Now Discounts

Mark Armstrong and Jidong Zhou Oxford University and New York University

Federal Trade Commission: 2011

Exploding Offers and Buy-Now Discounts I

- Relatively little work in economics about sales techniques
- One technique involves forcing a customer to decide to buy quickly, before she knows what other offers are available
- Attempts to ban this practice under EU's Unfair Commercial Practices Directive

- Exploding offer: customer cannot return to buy later
 - photography studio tells customers they must decide what pictures to buy that day (since negatives are destroyed)
 - salesman may say he is in the area for that day only, or it's his last day in that job
 - life insurance firm may give quote valid for 10 days, but it takes more than 10 days to generate another quote
 - (law) journal offers to publish author's paper, but requires immediate agreement

Exploding Offers and Buy-Now Discounts II

- Buy-now discount: seller promises to raise price if customer does not buy immediately
 - car dealer offers extra \$500 off so (as he claims) he can make his monthly quota
 - landlord offers \$100 reduction in monthly rental if tenant agrees straightaway
 - kitchen firm offers long-term quote, together with discount if customer signs immediately
- "Surprise" price hike: seller implements unannounced price rise when customer returns to buy
 - when browsing for air tickets, customer may find price has risen on returning to previously-visited website
 - consulting firm may raise fee if prospective client comes back after finding other consultants are unsuitable

Overview I

- We consider two scenarios:
- Monopoly model, in which consumers have uncertain—and initially unknown—outside option
- Oligopoly search model, where consumers search sequentially for good product and/or low price
 - We assume firm(s) can distinguish first-time from returning visitors
 - e.g., job offers, home improvements, doorstep sellers, life insurance, time-share companies, car dealers, "cookies" on computer
 - Firm(s) then often have incentive to discriminate against returning visitors
 - either by making exploding offer, by offering a buy-now discount, or with a surprise price hike

Overview II

Strategic benefits

- by making it difficult for a new visitor to return, seller makes continued search less attractive
- but may also harm seller by reducing the demand from those customers who would wish to buy later
- applies when seller can commit to its selling policy

Information benefits

- when seller knows customer has returned after investigating rivals (or outside option), this suggests she likes its offer best
- when seller cannot commit to selling policy, seller often has incentive to surprise returning buyer with a price hike

Monopoly Analysis

- Single firm supplies product at zero cost
 - its strategy is an initial price and—where relevant—a "buy-later" policy
- Consumers:
 - surplus from buying firm's product at price p is u p
 - u is idiosyncratic match value: fraction of consumers with $u \ge p$ is Q(p)
 - ullet we call $Q(\cdot)$ the "demand curve"
 - the firm does not observe u
- If consumer does not buy seller's product, her uncertain outside option is $v \ge 0$
 - ullet she does not know v when she first visits the monopolist
 - u and v are independent
 - possibly has to pay search cost s to discover v (otherwise just gets zero)
 - no intrinsic cost of returning to monopolist (until later)
 - consumers are risk neutral

Monopoly Analysis: Exploding Offers I

- For simplicity set s = 0 (doesn't affect result)
- Free recall:
 - consumers always investigate outside option
 - with price p, consumer buys if $u p \ge v$
 - ullet expected demand is $\mathbb{E}_{oldsymbol{
 u}}[Q(p+oldsymbol{
 u})]$
- Exploding offer:
 - with price p, consumer buys if $u p \ge \mathbb{E}_{v}[v]$
 - ullet expected demand is $Q(p+\mathbb{E}_{m{
 u}}[m{
 u}])$
- Proposition: From Jensen's Inequality
 - firm makes exploding offers if demand curve is concave
 - firm allows free recall if demand curve is convex
- This result also holds without commitment if some consumers are "credulous"

Monopoly Analysis: Exploding Offers II

- \bullet For given price p, use of exploding offers harms consumers
- Impact of sales tactic on price depends on elasticity (not levels) comparison between $\mathbb{E}_{v}[Q(p+v)]$ and $Q(p+\mathbb{E}_{v}[v])$
 - ambiguous, but "typical case" (eg., if Q' concave) is that exploding offer involves higher price
 - in this case, exploding offers cause two kinds of harm: poor matching and higher price

Monopoly Analysis: Buy-now Discounts

- Instead of extreme policy of refusing to sell to returning buyer, suppose firm offers a discount for immediate purchase
- Proposition: If the demand curve is strictly log-concave, the firm has incentive to offer a buy-now discount
- Thus, car salesman (say) has incentive to offer discount to a
 potential customer visiting for the first time (but if returning
 later she pays the regular price)
- Introducing buy-later premium
 - boosts immediate demand
 - reduces returning demand
 - boosts revenue from returning demand [extra effect relative to exploding offer case]
- Sometimes neither price falls when firm engages in this form of price discrimination

Monopoly Analysis: "Surprise" Price Hikes I

- Suppose consumers anticipate firm's price will be same on return visit
 - does firm have incentive to raise its price to those consumers who buy later?
- With no search frictions, answer is clearly "no"
- With s > 0 but no intrinsic cost of returning to seller after seeing outside option, answer is ambiguous (so far, we have no clear sufficient condition either way)
- With s > 0 and some small intrinsic cost of return r > 0, answer is clearly "yes" ...

Monopoly Analysis: "Surprise" Price Hikes II

- Suppose p is firm's initial price (which is also the price anticipated by consumer if she returns to buy later)
 - if consumer decides to return to buy then her preferences are such that $u-p-r>\nu$
 - seller can raise price to p+r and not drive any such consumers back to outside option
- Same argument shows there is no equilibrium buy-later price which induces any consumers to return
 - equilibrium outcome without commitment is as if firm makes an exploding offer
 - result is akin to Diamond's (1971) Paradox

Oligopoly Search Model I

- Monopoly analysis useful to obtain economic understanding of individual firm's incentives
- But has some strange features
 - all consumers have same distribution of outside option
 - no consumer has alternative offers already "in the bag"
- Model with sequential search overcomes these problems
- Use Wolinsky's (1986) market model
 - consumers search sequentially for a single item
 - $n < \infty$ symmetric firms supply differentiated products
 - surplus from buying firm i's product at price p_i is $u_i p_i$
 - i.i.d. match values (across consumers and products): probability $u_i \ge p$ is Q(p)
 - consumer discovers any seller's match utility, price and buy-later policy by incurring search cost $s \ge 0$
 - outside option has zero surplus

Oligopoly Search Model II

- Then just as in monopoly model:
- Proposition
 - firms use exploding offers if demand curve is concave
 - firms allow free recall if demand curve is convex
- Proposition
 - suppose the demand curve is strictly log-concave
 - then starting from Wolinsky's free-recall equilibrium a firm has incentive to offer a buy-now discount

Duopoly Example with Uniform Distribution

- Suppose the demand curve is Q(p) = 1 p
- Suppose there are no intrinsic search frictions (s = 0; p is buy-now price; \hat{p} is buy-later price):

	р	ĥ	immediate	returning	excluded
free recall	0.41	0.41	41%	41%	17%
buy-now discount	0.45	0.51	66%	11%	23%
exploding offer	0.45	n/a	73%	0%	27%